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Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff 

processes using a fully-coupled numerical, stochastic approach. 
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Abstract 

 The impact of three-dimensional subsurface heterogeneity on hillslope runoff generated 

by excess infiltration (so called Hortonian runoff) is examined.  A fully-coupled, parallel 

subsurface overland flow model is used to simulate runoff from an idealized hillslope.  

Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to 

create uncertainty and variability (i.e. structure) due to subsurface heterogeneity.  A large 

number of cases are simulated in a parametric manner with variance of the hydraulic 

conductivity varied over two orders of magnitude.  These cases include rainfall rates above, 

equal and below the geometric mean of the hydraulic conductivity distribution.  These cases are 

also compared to theoretical considerations of runoff production based on simple assumptions 

regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a 

spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-

called runon.  Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are 

also performed.  Results show three-dimensional features (particularly in the vertical dimension) 

in the hydraulic conductivity distributions that create shallow perching, which has an important 
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effect on runoff behavior that is fundamentally different in character than previous two 

dimensional analyses.   The simple theories are shown to be very poor predictors of the saturated 

area that might runoff due to excess infiltration.  It is also shown that ergodicity is reached only 

for a large number of integral scales (~30) and not for cases where the rainfall rate is less than 

the geometric mean of the saturated hydraulic conductivity. 

 

Introduction and Background 

There has been interest and need to understand the role of the subsurface heterogeneity in 

the processes of overland flow runoff generation.  Though the role of heterogeneity has been 

investigated in previous studies (e.g. Woolhiser et al, 1996), in the processes of runoff and re-

infiltration of overland flow (so-called runon), the interactions between the uncertainty in spatial 

variability in saturated hydraulic conductivity, Ks, and the ensuing impact on runoff processes 

have not been greatly explored.  Two recent papers by Nahar et al. (2004) and Herbst et al. 

(2006) have addressed these concepts and, in addition, comprehensively summarized the pre-

existing literature. Therefore only studies dealing with coupled subsurface and overland flow 

using stochastic representations will be discussed here. 

Perhaps the first study to look at coupled surface-subsurface flow utilizing a stochastic 

representation of Ks was Binley et al. (1989). They simulated three dimensional subsurface 

random fields of Ks using a correlated, Gaussian approach and demonstrated its impact on 

overland flow due to excess infiltration and excess saturation.  They looked at different cases 

with different parameter vales but performed a limited number of simulations due to the 

computational constraints at that time. 

Nahar et al (2004) used an overland flow formulation with an analytical, single-column 

subsurface infiltration model to investigate field-scale infiltration caused by runon (downslope 
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re-infiltration of runoff due to an increase in Ks) using two dimensional, correlated random fields 

to simulate subsurface properties.  They showed the importance of runon on subsurface recharge.  

They also presented a non-dimensional framework and investigated the uncertainty in spatial 

distribution of K
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s using a Monte Carlo approach for some cases over a modest range of 

parameter values.  Using this approach they showed that for rainfall rates lower than the mean 

hydraulic conductivity outflow increases with increasing heterogeneity (increasing variance in 

Ks) but found this relationship reversed for greater rainfall rates. 

Herbst et al (2006) applied a three dimensional hydrologic model to a small catchment.  

They looked at five different representations of subsurface heterogeneity and compared the 

hydrologic model results to the actual system.  They found that a conditional stochastic approach 

best represented the conditions of the real system. 

Though primarily focused on theoretical surface-subsurface coupled model development, 

Kollet and Maxwell (2006) investigated the effects of correlated, random fields of Ks on overland 

flow in a two-dimensional (vertical) test case.  Using a small number of realizations this work 

showed how shallow perching, runoff, runon and infiltration interact simultaneously to affect 

hillslope outflow.  

These previous studies all point to the need for an investigation of these processes and 

their interactions in a more systematic manner.  In the current study, we apply a novel, fully 

coupled surface-subsurface flow model to investigate the effects of three-dimensional 

heterogeneity in Ks on overland flow using a comprehensive set of simulations.  These 

simulations are designed to address the following four questions: 

1. How does three-dimensional subsurface heterogeneity influence (transient) 

outflow rates and their variability? 
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2. What is the fraction of saturated area for a certain rainfall rate and can we use 

estimates of this fraction to deduce average outflow rates (or vice versa)? 

3. Does a two-dimensional representation of subsurface heterogeneity suffice or is a 

three-dimensional representation necessary to capture accurately runoff 

processes? 

4. Does the concept of ergodicity apply?  That is, how large does a hillslope have to 

be, with regard to the scale of the heterogeneity, to exhibit effective behavior? 

In order to address these questions, we perform a large number of numerical experiments.  

These experiments include a wide range of parameter values with a variance of Ks spanning two 

orders of magnitude.  Additionally, we simulate three dimensional structure in the subsurface 

heterogeneity and ergodic domains, both features not previously investigated.  First, the coupled 

modeling approach is presented; next, non-dimensional parameters are introduced; and third, the 

case studies, including a table of parameter values, are detailed.  Finally, the results of the 

simulations are presented and discussed along with implications for field scale runoff. 

 

Coupled Model 

In this study, we use the flow code ParFlow to simulate fully-coupled surface and 

subsurface flow via an overland flow boundary condition.  While complete details of this 

approach are given in Kollet and Maxwell (2006), a brief summary of the equations are 

presented below.  ParFlow solves the Richards’ equation in three spatial dimensions which may 

be written as: 
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p is the subsurface pressure head [L], z is depth below the surface [L], Ks(x) is the 

saturated hydraulic conductivity [LT-1], kr is the relative permeability [-] (a function of pressure 

head, ψp), Ss is the specific storage coefficient [L-1], φ is the porosity [-], Sw is the degree of 

saturation [-] and qs is the general source/sink term [T-1]. 

Shallow overland flow is represented in ParFlow by the two-dimensional kinematic wave 

equation, which appears in the overland flow boundary condition after applying continuity 

conditions of pressure and flux:  

)(0,v
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where vv  is the depth averaged velocity vector [LT-1]; hs is the surface ponding depth [L] and 

q

103 

r(x) is the a general source/sink (e.g. rainfall) rate [LT-1]. Note that 0,sh indicates the greater 

value of the two quantities and that the overland flow condition assumes that h
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s=Ψp at the ground 

surface under saturated conditions (Kollet and Maxwell, 2006).  If diffusion terms are neglected 

the momentum equation can be written as 

Sf,i = So,i (3) 

which is commonly referred to as the kinematic wave approximation. In Equation 3 So,i  is the 

bed slope (gravity forcing term) [-], which is equal to the friction slope Sf,i [L]; i stands for the x- 

and y-direction. 

Manning’s equation is used to establish a flow depth-discharge relationship 

3/2,v s
xf

x h
n

S
−=  and 3/2,v s
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y h

n

S
=       (4) 

where n [TL

113 

114 -1/3] is the Manning’s coefficient.  
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ParFlow additionally has the ability to represent the hydraulic conductivity distribution of 

the subsurface as a correlated, space random field using a parallel, Turning Bands approach 

(Tompson et al 1989; Ashby and Falgout, 1996; Tompson et al 1998).  To incorporate this 

feature, we choose to represent the spatial variation of hydraulic conductivity as a statistically 

stationary, random field where: 

)()(ln xx fFK +=          (5) 

and FxK =)(ln , 0)( =xf  with 2
ln

22)( Kfxf σσ ==  and .  The mean or expected value 

of the lnK is signified by the overbar and K

F
g eK =121 

122 

123 

124 

G is the geometric mean of the hydraulic conductivity.  

The correlation of any two hydraulic conductivity values separated by a distance, ξ, with a 

correlation scale, λ, is represented by an exponential of the form: 
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Note that the correlation scale, λ, in (6) is equivalent to the integral scale, I (see section 

2.3.1 in Rubin, 2003).  While this technique of representing spatially correlated heterogeneity 

has been widely applied in subsurface flow (e.g., Smith and Schwartz, 1980; Dagan, 1989; 

Tompson and Gelhar, 1990; Rubin and Dagan, 1992) it is an approximate description of the 

subsurface heterogeneity usually applied at smaller spatial scales (e.g. Carle and Fogg, 1996; 

Carle and Fogg, 1997; Tompson et al, 1998). 

 

Non-dimensionalization of the governing equations. 

First, we introduce the rain application time, ta and the length of the hillslope, L, in the 

direction of overland flow.  We are interested in the relationship between the rainfall rate and the 

ability of the subsurface to infiltrate this rainfall.  It is common to think about the rainfall rate, 

Qrain, in relation to the saturated hydraulic conductivity of the subsurface, Ks.  However, we are 
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using a correlated, space-random field to simulate the subsurface heterogeneity in Ks, therefore 

we choose to non-dimensionalize Q

138 

139 rain by the geometric mean of the hydraulic conductivity  

g

rain
r K

Q
q =̀           (7). 140 

141 It is then natural to transform saturated hydraulic conductivity in the same manner, as 

g

s

K
KK =̀           (8). 142 

143 We may then combine saturation and porosity:  

SS φ=̀           (9). 144 

145 

146 

As we are interested in non-dimensionalizing with respect to the length scales of heterogeneity, 

we define L in terms of integral scales, Ix=Iy: 
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149 As stated earlier, we define time in terms of application time of the rainfall, ta: 

at
tt =̀            (12). 150 

151 This results in the following parameter groupings for the soil pressure head and ponding depth: 
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153 and the velocity: 
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155 The governing equations, then become: 

7 



([ ```
`
` zhkk

t
S

r −∇⋅∇=
∂
∂ )]156       (15) 

( ) rr qh
t

h
zhkk `0`,v`

`
0`,

``` −∇−
∂

∂
=−∇−        (16). 157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

 

Problem Setup  

To investigate the effects of three-dimensional subsurface heterogeneity on Hortonian 

hillslope runoff, we employ the numerical experiment shown in Figure 1.  The experiment 

consists of a uniform hillslope that terminates at a perpendicular channel.  Water may exit the 

hillslope anywhere along the channel though flow in the channel is not explicitly simulated.  The 

domain size is 6x6 integral scales and the lateral grid dimensions are nx=ny=30 and ∆x`=∆y`=0.2 

Ix,y. We use a fine vertical discretization with nz=150 (for 135,000 compute cells) and ∆z`= 

0.0004 Ix,y, (or 0.04 Iz) for a default domain size 6 Iz deep, to insure accurate solutions of surface-

subsurface interactions.  The friction slopes are constant in the x- and y-direction Sfx=0, Sfy=-

0.005 with a constant manning’s roughness coefficient of 2.9x10-6 (ta/Ix,y
1/3).  Rain is applied 

uniformly over the entire hillslope for ∆t’=1 with an ensuing recession of an additional ∆t’=1 

resulting in a total simulation time of t’=2.  To ensure Hortonian conditions, the water table is 

initialized at the bottom of the domain resulting in an initial hydrostatic pressure distribution 

with dry conditions at the ground surface. 

The numerical experiments are designed to directly address the four questions posed 

earlier.  For the complete set of numerical experiments, we systematically change the variance of 

the hydraulic conductivity field, , (i.e. the degree of subsurface heterogeneity), the 

normalized rainfall rate, the statistical anisotropy and the size of the domain. 

2
ln Kσ

8 



For the base-case, we performed a series of simulations using statistically anisotropic 

fields with ε=I
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z/Ix,y=0.01 (as defined in Rubin, 2003 and Dagan, 1989). The results of these 

simulations are used to quantify the influence of subsurface heterogeneity on outflow rates and to 

study the relationship of fraction of saturated area and outflow rate. Additionally, statistically 

isotropic simulations were performed and compared to the anisotropic simulations to examine 

whether a two-dimensional representation of subsurface heterogeneity suffices to capture the 

main processes of runoff production.  We simulate 50 realizations of hydraulic conductivity 

distribution for each case and average all results over this ensemble.  Each realization was 

generated using a parallel version of the turning bands algorithm (Tompson et al, 1989) utilizing 

75 lines, rζ=5.0 and ∆k=0.2. 

Additionally, we simulated six ergodic cases that are 72Ix wide consisting of a single 

realization.  Again, we use a parallel version of the turning bands algorithm utilizing 350 lines, 

rζ=5.0 and ∆k=0.2.  This set of simulations examines the average behavior of a hillslope, which 

is of great significance with regard to upscaling.  In summary, we simulate 33 different cases 

including 1,209 different individual simulations. All simulations and associated parameters are 

shown in Table 1. 

Figure 2 displays the five lognormal distributions of hydraulic conductivity used in these 

numerical simulations, normalized by the rainfall rate.  This figure also delineates the three non-

dimensional rainfall rates used in this study.  Inspection of this figure provides some indication 

of expected runoff behavior; for example, simulations using the intermediate rainfall rate should 

show very little sensitivity to . 2
ln Kσ
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201 Table 1.  List of all numerical simulations and parameter values. 

Simulations 2
ln Kσ  Qrain/Kg ε Lx Number of 

realizations
0.1 0.5 0.01 6 50 
0.5     
1     
5     
10     
0.1 1.0    
0.5     
1     
5     
10     
0.1 2    
0.5     
1     
5     

Anisotropic 
(base case) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10     

1 0.5 1   
0.5     
5     
1 1.0    
0.5     
5     
1 2    
0.5     

Isotropic 
 
 
 
 
 
 
 
 5     

0.5 1 0.1 72 1 
1.0     
5     
0.5 0.5    
1.0     
5     
0.5 2    
1.0     

Ergodic 

5     
202 

203 

204 

205 
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Figure 2. Plot of cumulative, lognormal distributions for the five variances used in this study, normalized as a 

function of rainfall rate over the geometric mean of hydraulic conductivity.  The three normalized rainfall rates are 

also plotted on this figure as gray, vertical lines. 
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Figure 3. Plot of non-dimensional hydraulic conductivity (K`) at the land surface (top) for a range of increasing 

variances of lnK from left to right as shown for a single realization, 20.  Next three rows are plots of non-

dimensional depth of ponded water (h`) for these corresponding realizations at t`=1 for increasing non-dimensional 

rainfall rates q`=0.5, 1.0 and 2.0.  Note outflow occurs at the top of each panel. 
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Results and Discussion 221 
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Figure 3 plots a single realization of hydraulic conductivity field for the range of  

simulated in this work.  All plots are for the same random seed (and thus the same spatial pattern 

of heterogeneity), with  increasing from left to right.  Also shown in the figure are the 

corresponding depths of ponded water at t`=1, the time of peak flow.  These plots are for cases of 

increasing Q

2
ln Kσ

2
ln Kσ

rain from top to bottom.  These plots illustrate the increase in ponding depth both 

with increasing rainfall (top to bottom Figure 3) and increasing heterogeneity (left to right, 

Figure 3). 

Figure 4 plots the non-dimensional hydrograph, averaged over all realizations for the 

base-case simulations; that is for five and three non-dimensional rainfall rates.  In this figure 

we see an increase in outflow with increasing for all three rainfall rates.  This increase is 

most significant for the lowest rainfall rate and least significant for the highest rainfall rate. 

2
ln Kσ

2
ln Kσ

Figure 5 summarizes this information, plotting the total, non-dimensional outflow as a 

function of  for the three rainfall rates.  This figure plots the ensemble average outflow over 

all realizations (solid line) and the average +/- one standard deviation of outflow (dashed lines).  

In this figure, we again see an increase in percent total outflow with increasing .  There is 

also an increasing variance in the outflow rate (generated by the difference in outflow from 

different realizations of hydraulic conductivity) with increasing . 

2
ln Kσ

2
ln Kσ

2
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Figure 4. Plot of the ensemble average of non-dimensional outflow against non-dimensional time for five values of 

variance of ln(K) (different symbols as noted) for three non-dimensional rainfall rates, as labeled, increasing in 

amount from the top panel to the bottom panel.  Note the different scale for the y-axis in the three panels of this 

figure. 
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Figure 5.  Plot of percent total runoff as a function of variance of ln(K) for the three non-dimensional rainfall rates 

simulated.  The average over all realizations is plotted as the solid line while the average +/- one standard deviation 

is plotted as the dashed lines. 
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At the ground surface, the fractional saturated area (cells with Sw ≥ 1  and ψ ≥ 0) was 

calculated at t`=1 (time of peak flow) for all  values and rainfall rates in two distinct ways.  

First, the fractional area was calculated, regardless of connection to the channel, i.e. any 

saturated area was counted regardless of spatial orientation.  In the second approach, only those 

cells were counted that provided a contiguous or connected saturated path to the channel.  The 

calculated fractional saturated areas were then averaged over all realizations. Figure 6 plots the 

results of this calculation, fraction of saturated area, total and connected, as a function of  

for the three rainfall rates.  In this figure we see that for the lowest rainfall rate (Q

2
ln Kσ

2
ln Kσ

rain/Kg=0.5, left 

panel) the fraction of saturated area increases with increasing .  This is also the case for the 

Q

2
ln Kσ

rain/Kg=1.0 case (middle panel) though there is less of an increase for larger .  For the 

largest rainfall rate (Q

2
ln Kσ

rain/Kg=2.0) we see the opposite relationship; decreasing fractional 

saturated area with increasing . 2
ln Kσ

In Hortonian overland flow, one may attempt to calculate the fraction of ponded, or 

saturated surface cells based on the shape of the assumed distribution of ln(K) and the rainfall 

rate.  This may be done in two ways, one that does not take into account the lateral spatial 

structure of the saturated hydraulic conductivity field and one that does and accounts for both 

runoff and runon processes.  For the former case, the fraction of saturated area may be calculated 

as the fraction of the distribution of ln(K) that is less than the rainfall rate.  This may be viewed 

graphically as the intersection of the rainfall values and the distribution of ln(K) shown in Figure 

2.  This approach is similar in concept to runoff parameterizations in many classes of land 

surface models (e.g. Wetzel et al, 1996; Liang et al, 1996; Lohmann et al, 1998).  For the latter, 

connected case, the lateral spatial distribution saturated hydraulic conductivity affects the 
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calculation.  In this case, the fraction of saturated hydraulic conductivity values below the 

rainfall rate, connected to the channel (starting at the outflow side of the hillslope and working 

upward) were calculated from the generated random fields and then averaged. These calculations 

were performed for both cases are plotted as a function of rainfall rate and variance as the heavy 

solid (total) and dashed lines (connected) in Figure 6. 

We see, in Figure 6, that the fractional surface saturated areas calculated from the 

distributions of hydraulic conductivity almost always under-predict the simulated values.  Only 

at the smallest variance of 0.1 do the fractional surface saturations agree and the most 

pronounced differences are for values of  greater than one.  The largest difference (50%) in 

the predicted and simulated fractional saturated surface area is for the rainfall rate of 

Q

2
ln Kσ

rain/Kg=1.0.  At this rainfall value, the fractional surface areas calculated from the distribution 

of ln(K) predict no change with variance of ln(K).  The simulated values show that this not the 

case and suggest that consideration of other processes is important, which are discussed below. 

There are two physical processes accounted for in the simulations that create the 

differences seen in Figure 6.  These processes are runon-generated excess infiltration and 

shallow perched or ponded zones.  Runon generated excess infiltration occurs when the saturated 

hydraulic conductivity of a tile is greater than the rainfall rate but not greater than the sum of the 

rainfall rate and the inflow from an upslope tile that is already saturated and generating runoff.  

This is a variation of the runon process but instead of the runon water leading to subsurface 

infiltration as simulated by previous studies, it may still run off later from a downslope tile, given 

these conditions. 

Shallow perching is ponded water that builds up at the land surface (and runs off) not due 

to the surface value of hydraulic conductivity being lower than the rainfall rate but due to low-K 

values just below the land surface.  This water initially infiltrates but eventually cannot flow past 
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a low-K layer in the shallow subsurface and saturates the cells above this low-K cell and 

eventually ponds water at the land surface which then runs off.  An example of this phenomenon, 

as simulated by the coupled model, may be seen in Figure 13 of Kollet and Maxwell (2006).  It is 

clear from Figure 6 that both these processes are occurring and important, particularly at large 
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Figure 6. Plot of calculated fractional total (thin lines with squares) and connected (thin lines with diamonds) 

saturated area at t’ = 1, averaged over all realizations, as a function of variance of ln(K) for the three rainfall rates.  

The fractional areas predicted by the distribution of hydraulic conductivity that is less than the rainfall rate is also 

shown for total (kavg1,heavy solid line) and connected (kavg2, dashed line). 
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The ergodicity of heterogeneous hillslope processes have not been previously 

investigated.  Ergodicity has, however, been a common topic in other areas such as subsurface 

transport (e.g. Dagan, 1989; Rubin, 2003) and is defined as the equivalence between spatial and 

ensemble statistics (Rubin, 2003).  The condition of ergodicity plays an important role in 

understanding when a hillslope is of sufficient spatial scale that effective behavior would be 

expected.  Therefore, understanding of ergodicity is key in upscaling subgrid heterogeneity to 

simulate runoff processes in large scale models. 

In order to examine ergodicity, a series of very large (72 Integral scales wide) domains 

were constructed for three  values, 0.5, 1.0 and 5.0, for the three rainfall rates.  The 

cumulative outflow was calculated and normalized for increasing distances (and thus 

corresponding hillslope areas) along the channel (i.e. the x-axis).  In this way, not only the total 

fractional outflow, but the fractional outflows for domain widths ranging from 0.2 to 72I

2
ln Kσ

x could 

be calculated as well.  These outflows are plotted in Figure 7 as a function of non-dimensional 

catchment width for the three values of  and for the three rainfall rates (solid curves).  For 

each plot, the corresponding ensemble average of total fractional outflow was also plotted 

(dashed curves).  Comparison of these two curves (and particularly their intersection) provides 

an estimate of the catchment width needed for ergodic behavior of Hortonian runoff. 

2
ln Kσ

Inspection of the curves in Figure 7 demonstrates several important features.  One, the 

total outflow again increases both with increasing  and with increasing rainfall rate.  

Additionally, for lower variances ( =0.5 and 1.0) and for the lowest rainfall rate, ergodic 

behavior with catchments narrower than 72I

2
ln Kσ

2
ln Kσ

x is unlikely.  For the two larger rainfall rates, 

ergodic behavior is approached at catchments approximately 30 integral scales wide with a 

smoother transition to ergodic behavior at the largest rainfall rate. 
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Figure 7.  Plot of total fractional outflow as a function of increasing catchment width for a large, single realization of 

hydraulic conductivity (solid line), for three variances of ln(K) (left to right) and for increasing non-dimensional 

rainfall rate (top to bottom).  The ensemble average of total fractional outflow (as in Figure 5) is plotted as the 

horizontal, dashed line.  Note the different y-axis for each panel in this figure. 

 

The trends seen in Figures 4 and 5 that outflow always increases with increasing , are 

somewhat counterintuitive, particularly at the larger rainfall rates.  Additionally, these trends do 

not agree with the findings of Nahar et al (2004).  The work of Nahar and colleagues was more 

simplified than the current study and among other aspects, only considered two-dimensional 

random fields of hydraulic conductivity and did not fully couple the surface and subsurface in 

2
ln Kσ
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the same manner done in the current work.  Though they include the important process of runon 

in their analysis, their results do not honor processes related to runon-generated excess 

infiltration and additional processes resulting from vertical heterogeneity in the hydraulic 

conductivity, such as perching in the shallow subsurface.  To investigate the importance of 

vertical structure in hydraulic conductivity and processes related to shallow perching a series of 

simulations with a much larger statistical anisotropy ratio, ε=1, were simulated and compared to 

the base-case simulations with ε=0.01 for = 0.5, 1.0 and 5.0.  Though still generated with a 

three-dimensional hydraulic conductivity field, with a vertical correlation length more than 16 

times larger than the thickness of the domain, these simulations are effectively two-dimensional. 
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The results of these simulations are plotted in Figures 8 and 9.  Figure 8 plots non-

dimensional outflow as a function of non-dimensional time for the three variances (lines with 

filled symbols) for the three rainfall rates (increasing from the top to bottom) averaged over all 

50 realizations.  Also plotted are the corresponding base-case simulations with ε=0.01 (curves 

with open symbols), the same curves shown in Figure 4.  At the lowest rainfall rate (left panel) 

both sets of simulations show a trend of increasing outflow with increasing .  The 

statistically-anisotropic, base-case simulations predict more outflow than the statistically-

isotropic simulations, particularly at σ

2
ln Kσ

f
2=5.0.  At the intermediate rainfall rate, Qrain/Kg=1.0, there 

still is a trend of increasing outflow with increasing , but with a much larger difference 

between the statistically isotropic and anisotropic simulations in both the shape of the 

hydrograph and the total flow.  At the largest rainfall rate, a reversal in trend between the 

statistically isotropic and anisotropic cases is observed.  The base-case, with ε=0.01 predicts an 

increasing runoff rate with increasing variance, while the statistically-isotropic case, with ε=1.0, 

predicts the opposite behavior- decreasing outflow with increasing . 

2
ln Kσ

2
ln Kσ
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Figure 9 confirms this behavior, plotting the percent total runoff as a function of variance 

of ln(K) for the average of both cases (solid line) +/- one standard deviation (thin lines) with the 

ε=1.0 case plotted with symbols.  This figure also shows that the variance of the outflow behaves 

differently for the two cases, particularly at the largest rainfall rate.  In this figure we see that the 

statistically anisotropic (i.e. 3D) cases produce greater runoff than the corresponding statistically 

anisotropic (i.e. 2D) cases.  These differences are quite significant at the greatest values of  

and for the largest rainfall rates.  These differences underscore the contribution of processes such 

as runon-generated excess infiltration and shallow perching.  Exclusion of these important 

processes could lead to significant errors in runoff estimation. 
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Figure 8. Plot of non-dimensional, ensemble-averaged outflow as a function of non-dimensional time for three 

variances (symbols as noted) for three non-dimensional rainfall rates (0.5, top to 2.0, bottom) for statistically 

isotropic (ε=1.0) and anisotropic (ε=0.01) cases.  Note the difference in scale for the x-axis for the three figures. 
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Figure 9.  Plot of percent total runoff, averaged over all realizations (heavy lines) and +/- one standard deviation 

(thin lines), as a function of variance of ln(K) for the statistically isotropic (ε=1.0, symbols) and anisotropic (ε=0.01, 

solid lines).  Note the difference in scale for the x-axis for the three figures. 
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Conclusions 383 
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We applied a fully coupled subsurface, overland flow model to examine Hortonian runoff 

in a simple hillslope with a heterogeneous subsurface.  We investigate parametrically, the effects 

of a wide range of variance of lnK, normalized rainfall rates and statistical anisotropy.  We also 

investigate ergodicity with several, very large domains, but only a single realization of hydraulic 

conductivity.  Finally, we compare results of saturated area to some simple analytical tools for 

predicting excess infiltration areas.  From these numerical experiments, we reach the following 

conclusions: 

1. Three-dimensional subsurface heterogeneity, particularly vertical, structure in Ks, has a 

pronounced effect on Hortonian hillslope runoff.  Statistical anisotropy in hydraulic 

conductivity produces trends in outflow with increasing  that are the opposite of a 

statistically isotropic subsurface.  Additionally, the runoff produced from the statistically 

isotropic cases was greater than the runoff produced from the corresponding isotropic 

cases. 

2
ln Kσ

2. Runoff/infiltration percentage varies greatly with rainfall rate and variance of ln(K), i.e. 

degree of heterogeneity. 

3. An ergodic limit was determined to be around 30 integral scales but is only reached for 

larger rainfall rates with regard to the mean hydraulic conductivity.  

4. The simple calculations of saturated area that might contribute to excess-infiltration 

generated runoff, based on hydraulic conductivity distributions at the land surface and 

rainfall rate, show poor agreement with the numerical simulations.  Runoff 

parameterizations based upon these types of relationships would not be expected to 

produce accurate hydrographs. 
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While the inability of the simple relationships to predict saturated areas is discouraging, 

the ergodic behavior of the system for larger rainfall rates is not.  This indicates that effective 

behavior might be reached at the hillslope scale.  Analytic, stochastic approaches commonly 

applied to understand the role of subsurface heterogeneity on macrodispersion (e.g. Rubin and 

Dagan, 1992) might provide a template for understanding and upscaling Hortonian processes.  In 

this manner, a new set of governing equations could be developed to represent small scale 

processes.  Additionally, the changes in behavior shown in the presented numerical experiments 

should be used to guide field observations of hillslope runoff behavior.  Coupling numerical 

experiments, theory and observations will yield a more complete understanding of the underlying 

processes. 
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